
(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

Tracing Intruders Using Honeypot With Metasploit

Contents

Alin Boby

Institute of Information and Communication Technology

Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

alinboby@gmail.com

Hossen Mustafa

Institute of Information and Communication Technology

Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

hossen_mustafa@iict.buet.ac.bd

Abstract — In recent years, it is impossible to say that a system is

fully secure with no vulnerability. After exploiting a system,

hacking professionals use techniques to hide their real identities

and sweep out log records before leaving in such a way that

security experts cannot trace them. Researchers and network

administrators have applied several approaches to monitor and

analyze malicious traffic for malicious content by monitoring

network components, aggregating IDS alerts, and using different

types of honeypots. However, there is limited effort to trace an

attacker. In this paper, we propose a web application honeypot

that contains undetectable encoded metasploit contents and

integrated into real web application from different location.

When an intruder accesses these contents, exploited code in the

contents will run on intruder’s system and our system will get a

hidden backdoor through Metasploit console immediately. We

collect and store all activities and resources information of the

intruder system into database. We implemented the system as a

case study and by tracing the attackers, our proposed system was

able to successfully detect 103 attackers and collect information

of 67 attackers within a short period of time.

Keywords- Computer Security; Honeypot; Attacker Detection

I. INTRODUCTION

In the era of information, black or gray hat hackers often
target web applications that are vulnerable to attacks. Many
advanced attacks can be launched by the attacker using simple
tools. According to the “Web Application Vulnerability Report
2015” of Acunetix [1], major percentage of websites are
vulnerable to Cross Site Scripting (XSS), Denial of Service
(DoS), Secure Sockets Layer (SSL) related vulnerabilities,
SQL Injection, etc., as shown in Fig. 1. Some of these attacks
can be prevented by strengthening the security of the system.
Intrusion Prevention System (IPS) with penetration testing [2],
firewall, vulnerability scanner, etc., are being used to identify
major security lacking in a system [3]. However, these were not
designed to look at the behavior of millions of concurrent
sessions as a whole, but only to examine individual suspected
sessions. This eliminates the ability to identify an attack
composed of millions of valid requests. Anti-Virus (AV)
software are also used which can detect and prevent known
attacks but these signature based detection mechanisms have
limitation to capture new hacking techniques that use
modification of the code [4] or zero-day exploits [5]. However,
people are still using this type of software daily as there is no

Fig. 1: Top Web Vulnerabilities

other cheaper and/or better alternatives. Signature-based
detection technique is used in almost all commercial and non-
commercial AV software, but these cannot be completely
effective against zero-day malware [6]; many evaluations
conducted by renowned security firms confirmed this [7].
These evaluations often employ sophisticated malware, involve
elaborated schemes, and require more resources than generally
available to an average person to replicate. Some research
papers investigate the creation of simple zero-day malware that
can comprehensively exploit hosts and evade the installed AV
software. Also, researchers and network administrators have
applied several approaches to monitor and analyze malicious
traffic for malicious content by monitoring network
components, aggregating IDS alerts, and using different types
of honeypots. While there is significant effort in attack
detection, there is limited effort to trace an attacker.

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

In recent years, researchers have been working on
designing different types of honeypots to trace attackers [8][9].
But many attacks by undetectable exploits and proxy IP are not
detectable through these proposed systems. However, it is
possible to detect such advanced attacks when the honeypot
can establish a direct access to the attacker’s system. In this
paper, we propose a web application honeypot that contains
encoded metasploit contents integrated into a web application.
These contents can be exploited by an attacker using brute-
force or SQL injection attacking method. Our proposed system
diverts the attackers to the honeypot with metasploit contents;
when the attackers copy any of these contents to their system
and try to access any of the contents, exploited code in the
content will give us backdoor to control and trace the
resources, and activities of the attacker. We implemented our
proposed system as a case study and deployed in the Internet
like a regular web application. By tracing the attackers, our
proposed system was able to detect 103 attackers and collect
information of 67 attackers in a short period of time. Our
proposed system can collect and store all activities and
resources information of the intruder system into database.
Analysis of the stored information can give insights into
attacking methodologies, techniques, and levels; such insights
can help security researchers to design more secured systems.

The rest of the paper is organized as follows: in Section II,
we discuss backgrounds and related works of honeypots; we
present the proposed model in Section III and discuss
implementation details and results in Section IV; finally, we
conclude the paper in Section V.

II. BACKGROUND AND RELATED WORKS

A honeypot is a server that is configured by mirroring a real
production system to lure and detect potential attackers who
seek to gain unauthorized access to information systems. It is
used for trapping intruders by detecting, deflecting, or reducing
risky behavior in the information system. It consists of a
computer, a network site, and data which appears to be a part of
a network, but it is actually an isolated and monitored system.
A honeypot can record all actions and interactions with users.
Since honeypots do not provide any legitimate services, all
activities are considered unauthorized and malicious. It is used
to study activity traces left by attackers and subsequently
rectify the system security to prevent future attacks. Generally,
a honeypot consists of a computer, applications, and data that
simulates the behavior of a live system but acts as a decoy [10].
There are two broad categories of honeypots available today
based on their level of interaction: high-interaction honeypot
and low-interaction honeypot. Some authors classify a third
category, medium-interaction honeypots [11], that has higher
interaction from low-interaction honeypots but lower than
high-interaction honeypots. Based on planned use, honeypots
can be divided into production honeypots and research
honeypots [12]. Christian Seifert proposed HoneyC [8], a low
interaction client honeypot; it uses emulated clients that are
able to solicit as much of a response from a server that is
necessary for analysis of malicious contents. HoneyC consists
of three components: Visitor, Queuer, and Analysis Engine.
Dionaea [9] is a low-interaction server-side honeypot which
emulates vulnerabilities in Windows services targeted by

malware. Glastopf [13] is a Python web application honeypot
that emulates web vulnerabilities and handles unknown attacks
of the same category. Kippo [14] is a medium-interaction
honeypot that is built using SSH and python; it can record brute
force attacks and replay attacker’s interactions in emulated
shell on the fake SSH server during attacker’s attempt to guess
login credentials of an SSH server. Thug [15] is a Python
client-side low-interaction honeypot that emulates a web
browser; it can interact with the malicious website to explore
its exploits and malicious artifacts.

Last few years, many researchers worked widely with
honeypot. Several models and designs using honeypot have
been proposed for security against various attacks. Richardson
et al. [16] proposed honeypots to protect back-end servers from
attacks. Back-end servers handle more complex request and
manage valuable information. They propose a network model
that grants isolation to a back-end server from unauthorized
traffic, blacklisting of misbehaving clients. Thus, it can limit
back-end DoS attacks. The back-end server is isolated from the
network by a separate connection to a masquerading router that
changes all IP and MAC entries on packets exiting the router to
the current values for the router itself. This layer of indirection
prevents the discovery of the actual MAC address of the back-
end server’s network card. This indirection also facilitates the
masquerading router to allow legitimate traffic to pass to the
back-end server or to the attached honeypot. The DoS attacks
on back-end servers can be reduced by limiting further packets
from any traffic arriving at the honeypot. This can be
supplemented by blacklisting clients that exceed their
permissions. Khattab et al. [17] use roaming honeypot that
allows the locations of honeypots to be unpredictable to
mitigate service-level DoS attacks. The servers in the honeypot
are changed frequently so that hackers cannot identify and shut
down the honeypots. They propose their roaming honeypots
scheme to mitigate the effects of service-level DoS attacks, in
which many attacking machines acquire service from a victim
server at a high rate. The locations of honeypots are
continuously and unpredictably changing within a pool of
back-end servers. Each server alternates between providing the
service and acting as a honeypot in a manner unpredictable to
attackers. The roaming honeypots scheme detects and filters
attack traffic from outside a firewall, and mitigates attacks from
behind a firewall. Against service-level attacks, the honeypot
provides filtering effect which secures the service against
attacks launched from outside a firewall (external attacks) and
connection-dropping effect which mitigates attacks launched
from behind the firewall (internal attacks).

Khattab et al. [18] extended the work done in [17] to
propose a scheme of honeypot back-propagation to backtrack
and find the source of the DoS attack. They offer honeypot
back-propagation, a hierarchical trace back scheme which can
traces back and suspend sources of attacks without major effect
on the performance of legitimate traffic streams. The core idea
of the proposed scheme is that when a roaming honeypot
accepts packets, it starts a trace back process by notifying
autonomous systems across the path(s) towards attack sources.
Within each autonomous system, attack hosts are recognized,
and filtering rules are set up to block their network access.
Honeypot back-propagation provides a high payoff in this

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

regard. First, it uses accurate attack signatures, and thus,
reduces collateral damage. Second, it helps ISPs to accurately
locate compromised hosts on their networks. Third,
incremental benefits are possible with partial deployment of
honeypot back-propagation because network messages
involved in the scheme can be piggybacked on Border Gateway
Protocol (BGP) messages to traverse legacy networks. They
address low-rate attacks by a progressive honeypot back-
propagation scheme. They evaluated their schemes analytically
and using NS-2 simulations. The results show that attacks can
be stopped within seconds under many scenarios.

Anirudh et al. [10] deployed a honeypot for an Internet of
Things (IoT) system to block DoS attacks from malicious
attackers. Their proposed system also collects information on
the attacker. Generally, attacks are concentrated towards the
main server rather than the individual devices connected in the
system. In their model, all requests from clients are passed to
the IDS. Legitimate requests pass through the IDS onto the
server. If the IDS detect any anomalies in the requests, the
requests are passed onto the honeypot and the information
related to the attacker are stored as logs in a database. It blocks
the client completely off the server if verification fails.
Otherwise, if the client passes the verification, the data is
passed onto the server.

Moore et al. [19] used honeypot technique to detect
ransomware. Ransomware attack often would progress
alphabetically through mapped drives; so, they map an early
letter of the alphabet to the honeypot area. They used two
approaches to detecting ransomware: initially, a honeypot
folder monitored with a File Server Resource Manager
(FSRM), followed by observing changes to the Windows Event
Logs. EventSentry is configured following the instructions to
set up file auditing to event 4663: an attempt is made to access
an object. Actions are setup to follow the three tiers: email,
stop server service and finally shutdown the service. These
would be linked to filters, with the required thresholds to
trigger the action. Determining this threshold needs some
consideration but for the experiment, a 10 second period is
considered. In the experimental setup, normal activity is
monitored and averaged over a day.

Prevention of zero-day attack using methods for isolating
the malicious traffic by using a honeypot system was deployed
by Musca et al. [6]. They build the honeypot to collect
information. Instead of building firewalls and writing intrusion
detection and prevention systems, they lured in attackers and
study penetration methods. They used an isolated environment
to deploy the honeypot system that only tracks malicious
activity because it is not used as a production system. Using a
protected machine, they capture the collected data through an
encrypted tunnel. The attack analysis framework automatically
detects unknown attacks and generates signatures for the Snort
intrusion detection or prevention system.

Danchhenko et al. [20] proposed honeypot system to detect
suspicious activity on Remote Protocol. They have examined
two remote access protocols: Remote Desktop Protocol (RDP)
and Virtual Network Computing (VNC) with Remote Frame
Buffer (RFB) protocol. These protocols operate on a client-
server scheme. Using this method, they propose to obtain data

about attacks on servers held by malefactors, for research and
further development of the security architecture.

Low-interaction aggressive web application honeypot uses
JavaScript into the browser’s response to trace attacker’s
information [21] based on their IP addresses when XSS or SQL
injection attack happens. Some client-side attacks can be
predicted by behavior analysis using previously recorded client
honeypot data [22].

Recently, Naik et al. [23] presented a honeypot that can dis-
cover and predict an attempted fingerprinting attack by using a
Principal components analysis and Fuzzy inference system.
Their proposed system is successfully tested against the five
popular fingerprinting tools: Nmap, Xprobe2, NetScanTools
Pro, SinFP3 and Nessus.

Ahmed et al. [31] proposed to use honeypot in cyber
deception system. They propose a proactive and reactive phase
deceptive honeypot allocation policy to design a cyber
deception mechanism.

As we can find from the above discussion, there are several
works to identify different types of attacks or trace back
attackers using honeypot to prevent attack. However, in this
research, we aim at hacking back the attacker system using
honeypot to get more insight of the attackers.

III. PROPOSED HONEYPOT MODEL

In this paper, we design a web-based system using

honeypot to identify attackers and trace their resources, and

activities by getting access through reverse exploits. The

proposed honeypot system consists of four (4) components as

discussed in the following.

i. Attack Detection Module (ADM) detects attacks and

generates log records in honeypot database.

ii. Web Application Honeypot (WAH), placed in a
different location from real server, contains

metasploit contents.

iii. Metasploit Content Generator (MCG) automatically

generates a number of metasploit contents for web

application honeypot.

iv. Data Capture and Analysis Module (DCAM) extracts

attacker system information and stores into database
for further analysis.

A. Workflow of The Proposed System

The workflow of the proposed system is shown in Fig. 2; the

workflow has 6 steps.

1) MCG generates given number of encoded and

undetectable metasploit files and transfers to admin
panel directory in WAH.

2) Directories, pages, and links of WAH are merged
into RWA to make it seem real to the attacker.

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

Fig. 3: Attack Detection Module

3) ADM stores attacking IP address into ALR from

WAH web server access log. ADM detects attack
while client is trying to access the Real Web
Application (RWA).

4) ADM diverts either attacker into WAH or real client
to RWA login panel. It also diverts a client from
RWA for maximum number of login failure.

5) Attackers can login to WAH and may copy or open
metasploit contents available in WAH admin panel.

6) DCAM extracts attacker resource information as well

as activities and stores data into database while

attacker is opening any of these metasploit contents.

We discuss the details of each module in the following.

B. Attack Detection Module

Attack Detection Module (ADM) contains Log Analyzer

and Parser (LAP), Attacking Log Records (ALR) and Attack

Diversion Algorithm (ADA) as shown in Fig. 3. LAP extracts

log records except login panel access from raw access log file

in Web Application Honeypot (WAH). Real Web Application

(RWA) also contains raw access log file where attack

detection process may cause more false positive alerts; so, we

only consider raw access log from WAH to update ALR.

Login page link in WAH contains ADA that can check IP

address from ALR and divert attackers to fake login page in

WAH. ADA would pass legitimate users to the RWA.

1) Log Analyzer and Parser: ADM focuses on SQL

injection attack because it is the most common and popular

vulnerability into web application [24]. An SQL injection

attack comprises of injecting a deformed SQL query into a

web application via client-side input. Several tools are used to

create SQL injection attack; attackers use web analysis tools to

check feasibility of SQLi attack. Web analysis and

vulnerability scanner tools are also used to scan open port and

directory listing. LAP gets access logs for the attack attempts.

ALR generated by LAP contains exceptional log that includes

port scanning, dictionary attack, or SQLi attack. LAP extracts

data from raw access log, web server log file, and blacklisted

IP list and stores unique IP, attacking type and access details

into ALR to mark attacking IP addresses.

2) Attacking Log Records: While analyzing raw access log
and web server log file, we consider the following to update
attacking log records:

▪ Log contains ports that are not permitted but tried to

be accessed.

▪ Log contains IP address that are already blacklisted in

attacking log table.

▪ Log URL contains SQLi attack, directory listing and

dictionary attack.

3) Attack Diversion Algorithm: While a user accesses the

login page, ADA detects attack based on marked IP addresses

by the ALR. Initially, it diverts attacker to login panel in

honeypot to get user credentials and updates the user table in

honeypot database. After checking login information, ADA

Fig. 2: Workflow of the proposed system

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

gives the attacker permission to access into honeypot admin

panel that contains metasploit contents.

If the IP address from user session is not found in ALR, it

treats the user as a real client and redirects the client to login

page in RWA to get user credentials. The last portion of

algorithm checks the user login information and lets client

access the admin panel in RWA if credentials are matched to

information in RWA database. If login credentials are wrong,

ADA also counts login attempts and checks number of

attempts to maximum attempt limit. After maximum tryouts,

ADA treats user as an attacker for brute-forcing and adds

attacker IP address into ALR. Then, ADA diverts attacker

directly to admin panel in honeypot mimicking a successful

login. In such case, ADA updates the ALR with attack

information. ADA process is shown in Algorithm 1.

C. Web Application Honeypot

The proposed honeypot is a web application honeypot as

shown in Fig. 4 and it is integrated with ADA in the login link

script. WAH has a web server where login page is connected

to WAH database which is like RWA. Admin panel of WAH

contains different metasploit contents in PDF and JPEG

format. WAH web server has some directories and fake page

files that look like real links. The fake contents are generated

by metasploit content generator. The idea is to lure the

attacker to download and open the metasploit contents.

Algorithm 1: Attack Detection Algorithm

Input: IPu, Uname and Puser
1: Get IPu from LLS
2: Search IPu in ALR
3: if IPu found in ALR then
4: Divert to LPwah
5: Get Uname and Puser
6: if Puser matches to Pwah from DBwah then
7: Divert Uname into APwah
8: else
9: Show invalid login message

10: go to 5
11: end if
12: else
13: Divert to LPrwa
14: Get Uname and Puser
15: if Puser matches to Prwa from DBrwa then
16: Divert Uname into APrwa
17: else
18: Show invalid login message
19: Count An
20: if An > then
21: Add IPu into ALR
22: go to 7
23: else

24: go to 14

25: end if

26: end if

27: end if

Fig. 4: Proposed model of honeypot

D. Metasploit Content Generator

We designed Metasploit Content Generator (MCG) to

automatically generate metasploit contents for WAH. It uses

Metasploit Framework (MSF) to generate single exploit. By

this generator, we can generate different types of metasploit

files which will be used in different operating system of

attacker. To create undetectable metasploit content, we update

the signature of every exploited file. To change signature, we

decode a file, add some random comments in it and finally,

encode it again. This allows us to bypass the AV scanners

when attackers download the content.

E. Data Capture and Analysis Module

Data Capture and Analysis Module (DCAM) is designed to

extract resources and activities information from the attacker

system. Every code for specific exploit type contains auto-

script to run meterpreter automatically with specific port, host,

and another auto-script. We designed two auto-script: 1st one

in meterpreter shell script is configured by specific MSF

command list and 2nd one contains meterpreter command list

that extracts information when the attacker opens metasploit

content. DCAM also stores extracted information into

database dynamically for further analysis about attacker

motive and skill. DCAM architecture is shown in Fig. 5.

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

IV. SYSTEM IMPLEMENTATION AND RESULTS

We implemented the proposed Web Application Honeypot

(WAH) on a server and routed the DNS entry of the real

application to the honeypot server. WAH is the most important

part of the system with other three components: ADM, MCG

and DCAM. We discuss implementation strategies for these

components in the following.

A. Implementation of ADM

Standard web servers like Apache [25] and IIS [26] generate

log in Common Log Format (CLF). The CLF log file contains

a separate line for each HTTP request, can be readily analyzed

programmatically. A line in a file stored in the CLF is

composed of several tokens separated by spaces as shown

below:
host identifier auth-user date-time request status bytes

Several logs are maintained on a web server which includes
access log, error log, php error log, SSL request log, etc.
While simulating SQLi attack on WAH web server, we
observed that access log file contains ’UNION’ in case of
attack. Some captured log records are shown in Fig. 6.

Fig. 6: Analyzing access log to detect SQLi attack

In this figure, the entry with IP address 103.76.198.114 was
from our simulation but the other 2 IP addresses,
65.242.101.253 and 179.154.252.163, were for actual SQL
Injection attacks. For log analyzer and parser (LAP) in attack
detection module (ADM), we developed a PHP script that can
analyze log files to detect web attacks. LAP script extracts
attacking logs from access log, extracts data and stores marked
IP address, and details into ALR in WAH.

B. Implementation of WAH

We deployed our proposed WAH in a server that contains

metasploit contents and Content Management System (CMS).

In this system, we used Apache as Web server, MySQL as

Database server and Wordpress as CMS as it is very popular.

MCG and DCAM are also deployed in this server for

generating the metasploit files and creating a terminal to check

if any attacker opens metasploit files.

We create different types of metasploit contents using

MSF framework. Kali [27] recommends that we use a robust,

secure terminal emulator when operating the command-line

interfaces. It may be konsole [28], gnome-terminal, and recent

versions of PuTTY. We used several tools and web

applications for testing our proposed system and compared it

with other existing system. We implemented WAH in a Linux

server with public IP address. To integrate WAH into RWA,

we configured DNS record of RWA that assigns a subdomain

to WAH where the WAH contains all metasploit contents. To

pose the system as vulnerable, parameter passing is opened in

the RWA; such vulnerability will lure the attacker to the

honeypot.

Attackers generally use tools to analyze host and can easily

find out if any framework is used to develop the web

application in host [29]. Also, determining the operating

system of a host is important to every attacker for listing

possible security vulnerabilities, defining the available system

Fig. 5: Data Capture and Analysis Module

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

calls to set the specific exploit payloads, and for many other

OS-dependent tasks. We added meta contents with framework

information and OS information in WAH so that an attacker

easily finds out and launches attack to break into the system.

The first target of an attacker is to get user login information

from web application. A fake table containing fake user and

password information in WAH database is created. To make it

seem valid, fake user login table has the real table structure but

with fake information.

We implemented Attack Diversion Algorithm (ADA)

using PHP in the login page of WAH. DNS entry of the RWA

is configured to WAH and the ADA redirects user to either

RWA login page or WAH login page. ADA is also

implemented in RWA login page to detect continuous login

attempt. When attack is detected, ADA inserts client IP

address into ALR for dictionary attack and diverts user

directly to WAH admin panel.

C. Implementation of MCG

To generate metasploit content automatically, we used

metasploit framework, NXCrypt [30] and PHP. Here, the

metasploit framework is a Ruby-based, modular penetration

testing platform; it provides libraries, tools as well as complete

environment to generate metasploit contents that can be used

to evade detection. Using our MCG, we generate metasploit

contents and transfer these contents into WAH admin panel.

We generate fully undetectable contents with defined exploit

type, exploit name, number of exploits, IP address and port.

We used NXCrypt and PHP to automate the MCG process.

Antivirus software companies usually search for signature

of malware for identification. When they find a malware, they

add its signature to their virus/malware database along with

the corresponding disinfection methods and when it next

encounters that malware, the software alerts the computer

owner. Obviously, zero-day exploits, or malware that is new

and never been seen by the Antivirus software, will not be

detected by such a detection scheme. Another method of

getting past the Antivirus software is to just change the

signature of the malware. In other words, if we can change the

encoding of the malware without changing its functionality, it

should sail right past the Antivirus software without detection.

Fig. 7:MCG generate undetectable exploit by AV

We can re-code any malware and get this desired result. To

make metasploit files as undetectable, we generate encoded

exploit by our own bash script that uses MSFvenom

framework, NXcrypt and PHP script. Metasploit contents

generated by our MCG are tested by using

https://www.virustotal.com for 58 antivirus systems and the

Clean result is shown in Fig. 7.

D. Implementation of DCAM

We used meterpreter module of the metasploit framework

for implementing DCAM. We developed a program using shell

script that runs commands in meterpreter console. To

configure meterpreter console for opening session, first auto-

script containing MSF command is executed by shell script.

Another auto-script in MSF command containing meterpreter

auto command list with spooling facility is automatically

executed to extract attacker resources information when an

attacker accesses metasploit contents. Once the data is

collected, it is automatically stored in the DCAM database. We

used MySQL for our implementation.

E. Experimental Analysis

We deployed the implemented system in Internet similar to

a real web application. We discuss our findings in the

following for a deployment period of 2 months.

1) Detection of Attacks: We found that user log data in

WAH login panel contains total 422 log records where distinct

IP address count is 103. That means 24.41% different IP

addresses came to WAH panel several times. The chart shows

the comparison in Fig. 8.

Fig. 8: Unique IP addresses found in WAH login panel

Out of the 103 unique attackers, LAP detected 3 attacks as

SQLi attack from server access log and stored these 3 records

into ALR as SQLi attack. We have manually analyzed server

access log and found out 3 records only. That means that our

LAP is 100% successful in detecting any kind of SQLi attacks.

Since 3 attacks are SQLi attacks among 103 records,

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022

remaining 100 attacks are from Dictionary and brute forcing

attacks. DCAM shows that 67 attackers out of 103 attackers

are caught by metasploit contents in WAH; these attackers

transferred metasploit contents and tried to open the contents.

Remaining resistant attackers did not either transfer or open

metasploit contents. Fig. 9 shows the successful ratio for

tracing the attacker out of all attacks.

Fig. 9: Successful ratio for capturing the attacker

2) Attacker Resources Information in DCAM: The

capturing rate of different types of extracted information from

the 67 traced attacker is shown in Fig. 10. As we can see, our

proposed system was able to get sysinfo (system statistics), ps

(selection of the active processes), checkcm (if system is

virtual), dumplinks (get recent document), etc., information

from the attacker machine. It automatically stored extracted

information into DCAM database for further analysis. The

figure shows that we were able to get system info successfully

for 67% attackers. It also shows that metasploit contents in

WAH are successfully generated by MCG and DCAM can

extract information if attacker opens metasploit contents

generated by MCG. The extracted information can be very

essential for researching attacker motivation, activities, and

skills.

V. CONCLUSION

Several types of honeypots were proposed by researchers to

detect suspicious activities. Few models were suggested to

prevent the major attacks like DDoS or SQL injection attack.

Unlike existing works, we propose the concept of reverse

hacking by web application honeypot to trace attacker and

deeply examine attackers’ system resources, and their

motivation. Our proposed system, containing four

components, has been implemented successfully to detect

SQLi, brute-forcing and dictionary attack, and then, trace

resource information and activities log from attacker system.

Fig. 10: Different Types of Extracted Information

Experimental results show that our proposed system can

successfully divert an attacker to the honeypot and can trace

attacker resources using metasploit contents.

In future, we would like to analyze log data to detect more

attacks, generate various types of metasploit contents for

different platform which must look like unique and adding

more vulnerabilities in WAH in order to attract more attackers

of various expert levels. Additionally, more information can

be captured from the attacker’s system.

REFERENCES

[1] “Acunetix Web Application Vulnerability Report 2015,”

http://www.acunetix.com/acunetix-web-application-vulnerability-
report-2015/.

[2] F. Holik, J. Horalek, O. Marik, S. Neradova, and S. Zitta, “Effective

penetration testing with metasploit framework and methodologies,” in

Computational Intelligence and Informatics (CINTI), 2014 IEEE 15th

International Symposium on. IEEE, 2014, pp. 237–242.
[3] Y. Stefinko, A. Piskozub, and R. Banakh, “Manual and automated

penetration testing. benefits and drawbacks. modern tendency,” in

Modern Problems of Radio Engineering. Telecommunications and

Computer Science (TCSET), 2016 13th International Conference on.

IEEE, 2016, pp. 488–491.

[4] N. Thamsirarak, T. Seethongchuen, and P. Ratanaworabhan, “A case

for malware that make antivirus irrelevant,” in Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), 2015 12th International
Conference on. IEEE, 2015, pp. 1–6.

[5] H. Gupta and R. Kumar, “Protection against penetration attacks using
metasploit,” in Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2015 4th International
Conference on. IEEE, 2015, pp. 1–4.

[6] C. Musca, E. Mirica, and R. Deaconescu, “Detecting and analyzing

zero-day attacks using honeypots,” in Control Systems and Computer

Science (CSCS), 2013 19th International Conference on. IEEE, 2013,
pp. 543–548.

[7] “Acunetix Web Application Vulnerability Report 2016,”

http://www.acunetix.com/acunetix-web-application-vulnerability-
report-2016/.

[8] C. Seifert, I. Welch, P. Komisarczuk et al., “Honeyc-the low-interaction
client honeypot,” Proceedings of the 2007 NZCSRCS, Waikato
University, Hamilton, New Zealand, vol. 6, 2007.

(IJCSIS) International Journal of Computer Science and Information Security,

Vol. 20, No. 7, July 2022
[9] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias,

“Virtual machine introspection in a hybrid honeypot architecture.” in

CSET, 2012.
[10] M. Anirudh, S. A. Thileeban, and D. J. Nallathambi, “Use of honeypots

for mitigating dos attacks targeted on iot networks,” in Computer,
Communication and Signal Processing (ICCCSP), 2017 International
Conference on. IEEE, 2017, pp. 1–4.

[11] O. Ayeni, B. Alese, and L. Omotosho, “Design and implementation of a
medium interaction honeypot,” International Journal of Computer
Applications, vol. 70, no. 22, 2013.

[12] J. Riden and C. Seifert, “Different Kinds of Honeypots,” https://www.
symantec.com/connect/articles/guide-different-kinds-honeypots/, 2008.

[13] L. Rist, S. Vetsch, M. Kossin, and M. Mauer, “Know your tools:
Glastopf-a dynamic, low-interaction web application honeypot,” The

Honeynet Project, vol. 4, 2010.
[14] C. Valli, P. Rabadia, and A. Woodward, “Patterns and patter-an

investigation into ssh activity using kippo honeypots,” 2013.
[15] A. Dell’Aera, “Thug: a new low-interaction honeyclient,”

https://github. com/buffer/thug, 2012.
[16] T. Richardson, “Preventing attacks on back-end servers using mas-

querading/honeypots,” in Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing, 2006. SNPD 2006.

Seventh ACIS International Conference on. IEEE, 2006, pp. 381–388.

[17] S. M. Khattab, C. Sangpachatanaruk, D. Mosse,´ R. Melhem, and Znati,

“Roaming honeypots for mitigating service-level denial-of-service

attacks,” in Distributed Computing Systems, 2004. Proceedings. 24th

International Conference on. IEEE, 2004, pp. 328–337.

[18] S. Khattab, R. Melhem, D. Mosse,´ and T. Znati, “Honeypot back

propagation for mitigating spoofing distributed denial-of-service at-

tacks,” Journal of Parallel and Distributed Computing, vol. 66, no. 9,

pp. 1152–1164, 2006.

[19] C. Moore, “Detecting ransomware with honeypot techniques,” in

Cybersecurity and Cyberforensics Conference (CCC), 2016. IEEE,

2016, pp. 77–81.

[20] N. M. Danchenko, A. O. Prokofiev, and D. S. Silnov, “Detecting

suspicious activity on remote desktop protocols using honeypot

system,” in Young Researchers in Electrical and Electronic Engineering

(EIConRus), 2017 IEEE Conference of Russian. IEEE, 2017, pp. 127–

128.

[21] S. Djanali, F. Arunanto, B. A. Pratomo, A. Baihaqi, H. Studiawan, and

M. Shiddiqi, “Aggressive web application honeypot for exposing

attacker’s identity,” in Information Technology, Computer and

Electrical Engineering (ICITACEE), 2014 1st International Conference

on. IEEE, 2014, pp. 212–216.

[22] Y. Alosefer and O. F. Rana, “Predicting client-side attacks via

behaviour analysis using honeypot data,” in Next Generation Web

Services Prac-tices (NWeSP), 2011 7th International Conference on.

IEEE, 2011, pp. 31–36.

[23] N. Naik, P. Jenkins, N. Savage, and L. Yang, “A computational

intelligence enabled honeypot for chasing ghosts in the wires,”

Complex & Intelligent Systems, vol. 7, no. 1, pp. 477–494, 2021.

[24] N. Antunes and M. Vieira, “Detecting sql injection vulnerabilities in

web services,” in Dependable Computing, 2009. LADC’09. Fourth

Latin-American Symposium on. IEEE, 2009, pp. 17–24.

[25] “The Apache HTTP Server Project,” https://httpd.apache.org/.

[26] “Internet Information Services (IIS),” https://docs.microsoft.com/en-us/

iis/get-started/introduction-to-iis/iis-web-server-overview.

[27] R. Hertzog, J. O’Gorman, and M. Aharoni, “Kali linux revealed,”

Mastering the Penetration Testing Distribution, 2017.

[28] “Konsole - KDE’s Terminal Emulator,” https://konsole.kde.org/.

[29] A. V. Arzhakov and I. F. Babalova, “Analysis of current internet wide

scan effectiveness,” in Young Researchers in Electrical and Electronic

Engineering (EIConRus), 2017 IEEE Conference of Russian. IEEE,

2017, pp. 96–99.

[30] “NXcrypt; a polymorphic ’python backdoors’ crypter,” https://github.

com/Hadi999/NXcrypt.

[31] Anwar, Ahmed H., Charles A. Kamhoua, Nandi O. Leslie, and

Christopher Kiekintveld. "Honeypot Allocation for Cyber Deception

Under Uncertainty." IEEE Transactions on Network and Service

Management (2022).

https://httpd.apache.org/
https://konsole.kde.org/

